Details Page for 0.3261

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   512
P-Portion Size:   121
Tame?   No

MSV File: q-0.3261.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
982
12123
14184
16246
18327
204010
225011
246015
267216
288421
309822
3211228
3412829
3614436
3816237
4018045
4220046
4422055
4624256
4826466
5028867
5231278
5433879
5636491
5839292
60420105
62450106
64480120
66512121

(Click on a heap to see details)

Details for Q58(0.3261):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A | a2=1, b27=b25, bc=ab3, c2=b4, b2d=ab5, cd=b5, d2=b6, b3e=b7, ce=ab2e, de=ab7, e2=b8, b4f=ab9, cf=ab2f, df=ab3f, ef=ab9, f2=b10, b5g=b11, cg=ab2g, dg=ab3g, eg=b4g, fg=ab11, g2=b12, b6h=ab13, ch=ab2h, dh=ab3h, eh=b4h, fh=ab5h, gh=ab13, h2=b14, b7i=b15, ci=ab2i, di=ab3i, ei=b4i, fi=ab5i, gi=b6i, hi=ab15, i2=b16, b8j=ab17, cj=ab2j, dj=ab3j, ej=b4j, fj=ab5j, gj=b6j, hj=ab7j, ij=ab17, j2=b18, b9k=b19, ck=ab2k, dk=ab3k, ek=b4k, fk=ab5k, gk=b6k, hk=ab7k, ik=b8k, jk=ab19, k2=b20, b10l=ab21, cl=ab2l, dl=ab3l, el=b4l, fl=ab5l, gl=b6l, hl=ab7l, il=b8l, jl=ab9l, kl=ab21, l2=b22, b11m=b23, cm=ab2m, dm=ab3m, em=b4m, fm=ab5m, gm=b6m, hm=ab7m, im=b8m, jm=ab9m, km=b10m, lm=ab23, m2=b24, b12n=ab25, cn=ab2n, dn=ab3n, en=b4n, fn=ab5n, gn=b6n, hn=ab7n, in=b8n, jn=ab9n, kn=b10n, ln=ab11n, mn=ab25, n2=b26, b13o=b25, co=ab2o, do=ab3o, eo=b4o, fo=ab5o, go=b6o, ho=ab7o, io=b8o, jo=ab9o, ko=b10o, lo=ab11o, mo=b12o, no=ab25, o2=b26, b12p=ab11o, cp=ab2p, dp=ab3p, ep=b4p, fp=ab5p, gp=b6p, hp=ab7p, ip=b8p, jp=ab9p, kp=b10p, lp=ab11p, mp=ab11o, np=b12o, op=ab25, p2=b26, b11q=ab10p, cq=ab2q, dq=ab3q, eq=b4q, fq=ab5q, gq=b6q, hq=ab7q, iq=b8q, jq=ab9q, kq=b10q, lq=b10p, mq=ab11p, nq=ab11o, oq=b12o, pq=ab25, q2=b26, b10r=ab9q, cr=ab2r, dr=ab3r, er=b4r, fr=ab5r, gr=b6r, hr=ab7r, ir=b8r, jr=ab9r, kr=ab9q, lr=b10q, mr=b10p, nr=ab11p, or=ab11o, pr=b12o, qr=ab25, r2=b26, b9s=ab8r, cs=ab2s, ds=ab3s, es=b4s, fs=ab5s, gs=b6s, hs=ab7s, is=b8s, js=b8r, ks=ab9r, ls=ab9q, ms=b10q, ns=b10p, os=ab11p, ps=ab11o, qs=b12o, rs=ab25, s2=b26, b8t=ab7s, ct=ab2t, dt=ab3t, et=b4t, ft=ab5t, gt=b6t, ht=ab7t, it=ab7s, jt=b8s, kt=b8r, lt=ab9r, mt=ab9q, nt=b10q, ot=b10p, pt=ab11p, qt=ab11o, rt=b12o, st=ab25, t2=b26, b7u=ab6t, cu=ab2u, du=ab3u, eu=b4u, fu=ab5u, gu=b6u, hu=b6t, iu=ab7t, ju=ab7s, ku=b8s, lu=b8r, mu=ab9r, nu=ab9q, ou=b10q, pu=b10p, qu=ab11p, ru=ab11o, su=b12o, tu=ab25, u2=b26, b6v=ab5u, cv=ab2v, dv=ab3v, ev=b4v, fv=ab5v, gv=ab5u, hv=b6u, iv=b6t, jv=ab7t, kv=ab7s, lv=b8s, mv=b8r, nv=ab9r, ov=ab9q, pv=b10q, qv=b10p, rv=ab11p, sv=ab11o, tv=b12o, uv=ab25, v2=b26, b5w=ab4v, cw=ab2w, dw=ab3w, ew=b4w, fw=b4v, gw=ab5v, hw=ab5u, iw=b6u, jw=b6t, kw=ab7t, lw=ab7s, mw=b8s, nw=b8r, ow=ab9r, pw=ab9q, qw=b10q, rw=b10p, sw=ab11p, tw=ab11o, uw=b12o, vw=ab25, w2=b26, b4x=ab3w, cx=ab2x, dx=ab3x, ex=ab3w, fx=b4w, gx=b4v, hx=ab5v, ix=ab5u, jx=b6u, kx=b6t, lx=ab7t, mx=ab7s, nx=b8s, ox=b8r, px=ab9r, qx=ab9q, rx=b10q, sx=b10p, tx=ab11p, ux=ab11o, vx=b12o, wx=ab25, x2=b26, b3y=ab2x, cy=ab2y, dy=b2x, ey=ab3x, fy=ab3w, gy=b4w, hy=b4v, iy=ab5v, jy=ab5u, ky=b6u, ly=b6t, my=ab7t, ny=ab7s, oy=b8s, py=b8r, qy=ab9r, ry=ab9q, sy=b10q, ty=b10p, uy=ab11p, vy=ab11o, wy=b12o, xy=ab25, y2=b26, b2z=aby, cz=by, dz=b2y, ez=b2x, fz=ab3x, gz=ab3w, hz=b4w, iz=b4v, jz=ab5v, kz=ab5u, lz=b6u, mz=b6t, nz=ab7t, oz=ab7s, pz=b8s, qz=b8r, rz=ab9r, sz=ab9q, tz=b10q, uz=b10p, vz=ab11p, wz=ab11o, xz=b12o, yz=ab25, z2=b26, bA=az, cA=bz, dA=aby, eA=b2y, fA=b2x, gA=ab3x, hA=ab3w, iA=b4w, jA=b4v, kA=ab5v, lA=ab5u, mA=b6u, nA=b6t, oA=ab7t, pA=ab7s, qA=b8s, rA=b8r, sA=ab9r, tA=ab9q, uA=b10q, vA=b10p, wA=ab11p, xA=ab11o, yA=b12o, zA=ab25, A2=b26>

P = {a, b2, b4, b6, b8, b10, b12, b14, b16, b18, b20, b22, b24, b26, d, abe, f, b2f, abg, ab3g, h, b2h, b4h, abi, ab3i, ab5i, j, b2j, b4j, b6j, abk, ab3k, ab5k, ab7k, l, b2l, b4l, b6l, b8l, abm, ab3m, ab5m, ab7m, ab9m, n, b2n, b4n, b6n, b8n, b10n, abo, ab3o, ab5o, ab7o, ab9o, ab11o, p, b2p, b4p, b6p, b8p, b10p, abq, ab3q, ab5q, ab7q, ab9q, r, b2r, b4r, b6r, b8r, abs, ab3s, ab5s, ab7s, t, b2t, b4t, b6t, abu, ab3u, ab5u, v, b2v, b4v, abw, ab3w, x, b2x, aby, z}

Phi = 1 a 1 b ab a 1 b ab c ac b3 d bd e b5 f ab6 g b7 h ab8 i b9 j ab10 k b11 l ab12 m b13 n ab14 o b15 p ab16 q b17 r ab18 s b19 t ab20 u b21 v ab22 w b23 x ab24 y b25 z ab26 A b25

Monoid Structure

Idempotent  |G|  |Arch|
122
b26 *4390