Details Page for 0.4404

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   528
P-Portion Size:   5
Tame?   No

MSV File: q-0.4404.msv

Growth Pattern:

Heap   Q-Size   P-Size
321
562
9102
11184
21245
29325
69485
603805
13071445
27252725
57215285

(Click on a heap to see details)

Details for Q603(0.4404):

Q = <a,b,c,d,e,f,g | a2=1, b3=b, b2c2=c2, c3=ac2, bcd=abd, c2d=b2d, d2=c2, b2e=e, ce=ae, e2=c2, b2f=f, cf=af, f2=c2, b2g=g, cg=ag, g2=c2>

P = {a, b2, abc, c2, acd}

Phi = 1 1 1 a a bd bd abd abd b b c c b2d b2d abd abd bd bd ac2 ac2 d d ab2d ab2d bc2 bc2 abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 bc2 bc2 ab2d ab2d b2d b2d ac2 ac2 bd bd abd abd b2d b2d ac2 ac2 bc2 bc2 abd abd bd bd ac2 ac2 e e bde bde bc2 bc2 de de f f ac2 ac2 bd bd abd abd bc2 bc2 ac2 ac2 b2d b2d abd abd bd bd ac2 ac2 b2d b2d ab2d ab2d bc2 bc2 abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 e e ab2d ab2d b2d b2d ac2 ac2 bd bd abd abd b2d b2d ac2 ac2 bc2 bc2 abd abd de de ac2 ac2 e e bde bde f f de de bdf bdf ac2 ac2 bde bde abd abd bc2 bc2 ac2 ac2 b2d b2d abd abd bd bd ac2 ac2 bf bf ab2d ab2d f f abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 e e ab2d ab2d de de ac2 ac2 bd bd abd abd b2d b2d ac2 ac2 be be abd abd de de ac2 ac2 e e bde bde f f de de bdf bdf ac2 ac2 bde bde abd abd e e ac2 ac2 b2d b2d abd abd bd bd ac2 ac2 bf bf ab2d ab2d f f abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 e e ab2d ab2d de de ac2 ac2 bc2 bc2 abd abd bf bf ac2 ac2 be be abd abd de de ac2 ac2 e e bde bde f f de de bdf bdf ac2 ac2 bde bde abd abd e e ac2 ac2 abe abe abd abd bd bd ac2 ac2 bf bf ab2d ab2d f f abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 e e ab2d ab2d f f ac2 ac2 bc2 bc2 abd abd abf abf ac2 ac2 be be abd abd de de ac2 ac2 e e bde bde f f de de bdf bdf ac2 ac2 bde bde abd abd e e ac2 ac2 abe abe f f ef ef ac2 ac2 bf bf ab2d ab2d f f abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 e e ab2d ab2d f f ac2 ac2 bc2 bc2 abd abd abf abf ac2 ac2 be be abd abd de de ac2 ac2 e e bde bde f f de de bdf bdf ac2 ac2 bde bde adf adf e e ac2 ac2 abe abe aef aef ef ef ac2 ac2 bf bf abde abde f f abc2 abc2 e e ac2 ac2 bde bde abc2 abc2 e e ab2d ab2d f f ac2 ac2 bc2 bc2 abd abd abf abf ac2 ac2 be be aef aef de de abf abf e e bde bde f f de de bdf bdf abe abe bde bde adf adf e e ac2 ac2 abe abe aef aef ef ef abf abf bf bf abde abde f f abe abe e e ac2 ac2 bde bde adf adf e e ade ade f f ac2 ac2 bc2 bc2 abd abd abf abf ac2 ac2 be be aef aef de de abf abf e e bde bde f f de de bdf bdf abe abe bde bde adef adef e e ac2 ac2 abe abe aef aef ef ef abf abf adef adef abde abde f f abe abe e e ab2d ab2d bde bde adf adf e e ade ade f f abe abe bc2 bc2 abd abd abf abf ac2 ac2 be be aef aef de de g g e e ac2 ac2 f f de de bdf bdf abe abe bde bde g g e e ac2 ac2 abdg abdg aef aef ef ef bdef bdef abdg abdg abde abde f f g g e e ab2d ab2d bde bde adef adef e e ade ade f f abe abe bc2 bc2 g g abf abf ac2 ac2 be be aef aef de de g g bde bde ac2 ac2 f f abd abd bdf bdf bdg bdg bde bde g g e e ac2 ac2 abdg abdg aef aef ef ef abdf abdf abdg abdg abde abde f f g g e e ab2d ab2d bde bde adef adef ac2 ac2 abdf abdf f f abe abe bc2 bc2 g g abf abf ac2 ac2 be be bdef bdef de de g g bde bde ac2 ac2 f f abd abd bdf bdf abc2 abc2 bde bde g g abd abd ac2 ac2 abdg abdg g g ef ef abdf abdf abdg abdg abde abde bde bde g g e e ab2d ab2d bde bde adef adef adg adg abd abd f f abe abe bc2 bc2 g g abf abf ac2 ac2 be be bdef bdef de de g g abdg abdg ac2 ac2 bde bde abd abd bdf bdf abc2 abc2 bde bde g g e e ac2 ac2 abdg abdg g g ef ef ae ae abdg abdg abde abde bde bde g g e e ab2d ab2d bde bde adef adef adg adg abf abf f f aeg aeg bc2 bc2 g g bef bef abd abd be be bdef bdef de de ab2d ab2d abdg abdg ac2 ac2 bde bde abef abef e e abc2 abc2 f f g g e e ac2 ac2 abg abg ab2d ab2d ef ef abdf abdf abdg abdg abd abd bde bde g g e e ab2d ab2d bde bde df df adg adg abf abf f f aeg aeg bc2 bc2 g g de de abd abd abdg abdg g g b2d b2d ab2d ab2d abdg abdg ac2 ac2 aeg aeg abef abef e e abc2 abc2 f f g g e e ac2 ac2 abg abg ab2d ab2d ef ef abdf abdf abdg abdg bdg bdg bde bde g g de de ab2d ab2d bde bde df df adeg adeg bdeg bdeg abg abg aeg aeg f f g g de de abd abd adeg adeg g g b2d b2d aef aef abg abg abe abe aeg aeg abef abef e e abc2 abc2 f f afg afg e e ac2 ac2 abg abg ab2d ab2d ef ef g g abdg abdg bdg bdg bde bde g g abdeg abdeg beg beg be be df df bdfg bdfg bdeg bdeg abg abg aeg aeg f f g g de de abd abd adeg adeg g g b2d b2d ade ade abg abg abe abe aeg aeg abf abf e e abc2 abc2 f f abef abef e e ac2 ac2 abg abg efg efg bdefg bdefg g g abdg abdg abd abd bde bde ac2 ac2 e e beg beg be be bdfg bdfg abefg abefg bf bf abg abg aeg aeg be be dg dg de de abd abd adeg adeg ac2 ac2 b2d b2d ade ade be be adeg adeg df df bf bf e e adef adef be be abef abef e e ac2 ac2 df df g g efg efg dg dg abdg abdg abd abd bde bde ac2 ac2 e e beg beg be be bdfg bdfg abfg abfg bdeg bdeg bde bde aeg aeg f f dg dg de de abd abd adeg adeg ac2 ac2 bef bef g g be be adeg adeg df df bf bf e e abc2 abc2 be be bdfg bdfg befg befg ac2 ac2 df df g g abfg abfg abdf abdf abdg abdg bg bg bde bde ac2 ac2 e e beg beg be be bdfg bdfg abefg abefg df df bde bde aeg aeg f f ac2 ac2 de de bg bg adeg adeg ac2 ac2 bef bef g g adfg adfg adeg adeg df df bf bf e e abc2 abc2 be be bdfg bdfg defg defg ac2 ac2 df df

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c2 *6474