Details Page for 0.7246

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2454
P-Portion Size:   54
Tame?   No

MSV File: q-0.7246.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
5102
8163
14325
166410
1711216
2012416
2117626
2325236
2426837
2528039
3128440
3330040
3731842
4033443
4235044
4539848
5441450
5543052
8543854
8847054
19453454
41466254
91691854
1968143054
4286245454

(Click on a heap to see details)

Details for Q55(0.7246):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r | a2=1, b4=b2, b3c=bc, bc2=b3, c4=c2, bd=abc, c2d=ac3, d3=d, b3e=be, be2=b3, c2e2=c2, e3=e, bf=abc, c2f=ab2c, cf2=cdf, df3=d2f2, f4=f2, bg=abe, c2g=ab2e, e2g=g, dfg=ab2e, f2g=ab2e, g2=aeg, bh=ab3, ch=ab2c, dh=acd2eg, e2h=h, f3h=fh, gh=cdg, h2=b2, b2i=bce, bci=b2e, c2i=bce, cd2i=ci, ei=bc, cfi=cdi, d2fi=fi, f2i=dfi, gi=abc, hi=abce, bi2=b, fi2=di2, ci3=ci, di3=fi, i4=i2, bj=abc, c2j=ab2c, cfj=cdj, defj=d2ej, df2j=d2fj, f3j=fj, gj=fg, f2hj=hj, d2ij=ij, fij=dij, i3j=ij, j2=b2, bk=abe, cd2k=ck, e2k=k, f2k=dfk, gk=b2, fhk=ab2ce, ik=abc, jk=b2ce, k2=b2, bl=be, cl=b2ce, d2l=l, el=b2, fl=ab2ce, gl=ab2, hl=ab2e, il=bc, jl=ab2ce, kl=ab2, l2=b2, b2m=ab2ce, cm=ab2e, dm=b2e, em=ab2c, fm=b2e, gm=b2c, hm=b2ce, i2m=m, jm=b2e, km=b2c, lm=ab2c, m2=b2, b3n=bn, b2cn=cn, c2n=b2n, dn=acn, e2n=n, cfn=ab2n, f2n=n, gn=ab2en, hn=ab2n, in=bcen, cjn=ab2n, kn=ab2en, ln=b2en, mn=acen, n2=b2, bo=abc, co=ab2, do=b2, e2o=o, go=b2ce, ho=b2c, io=abe, jo=afhj, ko=b2ce, lo=ab2ce, mo=b2e, no=acn, o2=b2, bp=be, c2p=p, dp=acp, e2p=p, fp=ab2ce, gp=ab2, hp=ab2e, ip=bc, jp=ab2ce, lp=b2, mp=ab2c, np=b2en, op=ab2ce, p2=b2, bq=bcn, c2q=q, dq=acq, e2q=q, fq=ab2n, gq=acen, hq=acn, iq=ben, jq=ab2n, lq=cen, mq=ab2en, nq=b2c, oq=ab2n, pq=cen, q2=b2, br=bn, c2r=r, dr=acr, e2r=r, fr=acn, gr=ab2en, hr=ab2n, ir=bcen, jr=acn, lr=b2en, mr=acen, nr=b2, or=acn, pr=b2en, qr=b2c, r2=b2>

P = {a, b2, c2, d, ad2, ace, de, acd2e, ae2, de2, ad2e2, af, acdef, ae2f, f2, d2f2, e2f2, d2e2f2, af3, ae2f3, eg, adeg, d2eg, efg, aci, di, i2, d2i2, aj, acdej, ae2j, de2j, fj, d2fj, e2fj, af2j, ae2f2j, di2j, aek, ac2ek, ad2ek, efk, adefk, adl, aim, ajn, f3o, acep, aceq, ckq, cer, ackr}

Phi = 1 a 1 b ab bc abc c d c2ek b3 ab3 bc abc e b2c f g ab3 b3 h i b2c j adfk k cdij ij ab3 b3 ab2 l bc b2n abe ab3 b3 m b2ce ab2e n bc o be abe p b ab2 b2n abce bn bc abc abcn q r abce bn bc abc abcn ab2e bim acn abce bce bc acekp bcen ab2 ab2n b2en be abce ab3 abn bn cekq b2n be b3 ab3 abn ab2ce aben

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *32314
c2826
d244
e244
d2e288
f246
d2f248
e2f2812
d2e2f2816
aeg44
ad2eg88
i246
d2i2812