Details Page for 0.7246

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2454
P-Portion Size:   54
Tame?   No

MSV File: q-0.7246.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
362
5102
8163
14325
166410
1711216
2012416
2117626
2325236
2426837
2528039
3128440
3330040
3731842
4033443
4235044
4539848
5441450
5543052
8543854
8847054
19453454
41466254
91691854
1968143054
4286245454

(Click on a heap to see details)

Details for Q85(0.7246):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b4=b2, b3c=bc, bc2=b3, c4=c2, bd=abc, c2d=ac3, d3=d, b3e=be, be2=b3, e3=e, bf=abc, c2f=ab2c, cf2=cdf, df3=d2f2, f4=f2, bg=abe, c2g=ab2e, e2g=g, dfg=ab2e, f2g=ab2e, g2=aeg, bh=ab3, ch=ab2c, dh=acd2eg, e2h=h, f3h=fh, gh=cdg, h2=b2, b2i=bce, bci=b2e, c2i=bce, cd2i=ci, ei=bc, cfi=cdi, d2fi=fi, f2i=dfi, gi=abc, hi=abce, bi2=b, fi2=di2, ci3=ci, di3=fi, i4=i2, bj=abc, c2j=ab2c, cfj=cdj, defj=d2ej, df2j=d2fj, f3j=fj, gj=fg, f2hj=hj, d2ij=ij, fij=dij, i3j=ij, j2=b2, bk=abe, cd2k=ck, e2k=k, f2k=dfk, gk=b2, fhk=ab2ce, ik=abc, jk=b2ce, k2=b2, bl=be, cl=b2ce, d2l=l, el=b2, fl=ab2ce, gl=ab2, hl=ab2e, il=bc, jl=ab2ce, kl=ab2, l2=b2, b2m=ab2ce, cm=ab2e, dm=b2e, em=ab2c, fm=b2e, gm=b2c, hm=b2ce, i2m=m, jm=b2e, km=b2c, lm=ab2c, m2=b2, b3n=bn, b2cn=cn, c2n=b2n, dn=acn, e2n=n, cfn=ab2n, f2n=n, gn=ab2en, hn=ab2n, in=bcen, cjn=ab2n, kn=ab2en, ln=b2en, mn=acen, n2=b2, bo=abc, co=ab2, do=b2, e2o=o, go=b2ce, ho=b2c, io=abe, jo=afhj, ko=b2ce, lo=ab2ce, mo=b2e, no=acn, o2=b2, bp=be, c2p=p, dp=acp, e2p=p, fp=ab2ce, gp=ab2, hp=ab2e, ip=bc, jp=ab2ce, lp=b2, mp=ab2c, np=b2en, op=ab2ce, p2=b2, bq=bcn, c2q=q, dq=acq, e2q=q, fq=ab2n, gq=acen, hq=acn, iq=ben, jq=ab2n, lq=cen, mq=ab2en, nq=b2c, oq=ab2n, pq=cen, q2=b2, br=bn, c2r=r, dr=acr, e2r=r, fr=acn, gr=ab2en, hr=ab2n, ir=bcen, jr=acn, lr=b2en, mr=acen, nr=b2, or=acn, pr=b2en, qr=b2c, r2=b2, bs=ab2ce, c2s=s, ds=acs, es=abc, fs=be, gs=bc, hs=bce, is=ab2, js=be, ks=bc, ls=abc, ms=b3, ns=abcen, os=be, ps=abc, qs=aben, rs=abcen, s2=b2>

P = {a, b2, c2, d, ad2, ace, de, acd2e, ae2, c2e2, de2, ad2e2, af, acdef, ae2f, f2, d2f2, e2f2, d2e2f2, af3, ae2f3, eg, adeg, d2eg, efg, aci, di, i2, d2i2, aj, acdej, ae2j, de2j, fj, d2fj, e2fj, af2j, ae2f2j, di2j, aek, ac2ek, ad2ek, efk, adefk, adl, aim, ajn, f3o, acep, aceq, ckq, cer, ackr, cs}

Phi = 1 a 1 b ab bc abc c d c2ek b3 ab3 bc abc e b2c f g ab3 b3 h i b2c j adfk k cdij ij ab3 b3 ab2 l bc b2n abe ab3 b3 m b2ce ab2e n bc o be abe p b ab2 b2n abce bn bc abc abcn q r abce bn bc abc abcn ab2e bim acn abce bce bc acekp bcen ab2 ab2n b2en be abce ab3 abn bn cekq b2n be b3 ab3 abn ab2ce aben s be bc

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *32318
c2410
d244
e244
c2e2820
d2e288
f246
d2f248
e2f2812
d2e2f2816
aeg44
ad2eg88
i246
d2i2812