Details Page for 0.0702

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1312
P-Portion Size:   89
Tame?   No

MSV File: q-0.0702.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
462
10123
15163
18226
21388
22449
235011
2413031
3319434
3448465
3566277
4176682
4379884
4580685
5481689
19883289
43786489
91392889
3355105689
10462131289

(Click on a heap to see details)

Details for Q198(0.0702):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b3=b, b2c2=c2, c4=c2, b2cd=cd, c2d=ac2, d2=c2, be=c2, c2e=bc2, de=abc2, e4=e2, cf=c2, b2df=df, f2=c2, b2g=g, cg=c2, dg=ac3, eg=bc3, fg=c2, g2=c2, b2ch=ch, c2h=bc3, dh=abc3, ceh=c2, e2h=e3f, b2fh=fh, efh=c2, gh=bc2, bh3=bh, ch3=ch, fh3=fh, h4=h2, bi=c3, ci=bc2, e3i=ei, fi=bc2, gi=bc2, hi=c2, i2=c2, bj=c2, c2j=bc2, dj=abc2, ce2j=bc3, e2fj=bc3, gj=bc3, hj=efj, eij=bc3, j2=e3j, c2k=ac2, b2dk=dk, dfk=acd, efk=ace, fhk=ach, dik=bc3, cejk=aij, e2jk=abc2, fjk=acj, ik2=aik, cdk3=acdk2, cek3=acek2, fk3=ck3, gk3=agk2, chk3=achk2, cjk3=acjk2, ck4=ack3, dk4=adk3, ek4=aek3, hk4=ahk3, jk4=ajk3, k5=ak4, b2cl=cl, c2l=ac3, dl=c3, el=ae3f, b2fl=fl, gl=ac2, b2hl=hl, ch2l=cl, fh2l=fl, h3l=hl, il=abc2, jl=abc3, fkl=acl, ck3l=ack2l, k4l=ak3l, l2=c2, bm=bh2l, c2m=ac3, dm=c3, gm=ac2, chm=chl, fhm=fhl, e2jm=abc3, fkm=acm, ck3m=ack2m, k4m=ak3m, lm=ae2fm, m2=c2, b2n=n, c2n=bc3, en=c3, hn=c2, in=c2, jn=c3, k4n=ak3n, ln=acdkn, mn=abc2, n2=c2, b2co=co, c3o=co, b2do=do, cdo=aco, ceo=bco, e3o=eo, fo=co, go=co, bho=co, cho=bc2o, eho=co, h3o=ho, io=bco, jo=bc2o, cko=aco, bk2o=abko, dk2o=adko, k4o=ak3o, lo=aco, cmo=ac2o, no=bco, o2=c2, bp=c3, cp=acjm, dp=abc3, fp=afjm, gp=bc2, hp=aefjm, ip=aijm, jp=c3, e2k2p=e2i, k4p=ak3p, lp=abc2, e2mp=mp, k2mp=e2im, np=c2, op=bco, p2=c2, b2q=q, cq=bc3, dq=acdkn, eq=c2, fq=bc3, gq=bc3, hq=c3, iq=c3, jq=c2, k2q=akq, lq=abc3, mq=abc3, nq=c3, oq=bc2o, pq=c3, q2=c2, b2r=r, cr=bc3, dr=dfn, er=c2, fr=bc3, gr=bc3, hr=c3, ir=c3, jr=c2, kr=acn, lr=abc3, mr=abc3, nr=c3, or=bc2o, pr=c3, qr=c2, r2=c2, b2s=s, c2s=s, ds=as, es=bs, fs=cs, gs=cs, hs=bcs, is=bcs, js=bs, ks=as, ls=acs, ms=acs, ns=bcs, ps=bcs, qs=bs, rs=bs, s2=c2>

P = {a, ab, ab2, c2, e, ae2, e3, abh, bch, bfh, ah2, ab2h2, adi, j, aej, ae3j, k, bk, b2k, aek, ae3k, h2k, b2h2k, ajk, ak2, abk2, ab2k2, ek2, e3k2, abchk2, ah2k2, ab2h2k2, jk2, k3, bk3, b2k3, aek3, ae3k3, h2k3, b2h2k3, ajk3, ak4, abk4, ab2k4, acl, afl, ckl, acm, ace2m, afm, ae2fm, aehm, aeh3m, aeim, acejm, aefjm, aijm, ckm, ce2km, ehkm, eh3km, acek2m, ace3k2m, aehk2m, aeh3k2m, acjk2m, hk3m, h3k3m, bcn, abcdn, bfn, abdfn, bgn, abckn, bcdkn, ack2n, abfk2n, abgk2n, ck3n, bck3n, abko, bdko, k3mo, e2k3mo, h2k3mo, aemp, ekmp, bq, br}

Phi = 1 1 a a ack ack ck ck a c2 b b ck c3 c d ac2 c2 e f g h i j k ac2 c3 c3 ac3 aef ac2 ac2 bc2 l m n c3 ac2 ae3j c2 bc2 o ace3k p abc3 q ac2 ac2 abc2 c3 ac3 abc3 ac2o abc2 r ac3 abc3 c3 c3 ac2 ac2o c2 bc2 c2o ac2 bc3 abc3 afjm bc2 ac2 c3 c3 bc3 ac3 bc2o abc2 bc2 bc2 abc3 bc3 c3 c2o ac2o c2 bc2 aco ac2 bc3 c2o bc2 bc2 ac2 aco c3 ac3 ac3 c2o c2o ac2 ac2 abc3 bc3 c3 c2o ac2o c2 bc2 co ac2 c3 c3 bc2 bc2 ac2 aco c3 ac3 ac3 ac2o c2o ac2 ac2 aco c3 c3 bc3 ac2o c2 bc2 co co c3 c3 c2o c2o abc2 ac2 co ac3 ac3 c3 c2o bc2 bc2 co bco bc3 bc3 ac2o abc2o bc2 aco aco c3 abc3 bc3 c2o abc2 aco co ac3 bco c3 ac2 ac2 bc2 bc2 aco bc3 bc3 ac2o abc3 abc2o bco aco ac2o abc3 ac3 bc2 ac2 aco abco co abc3 abc3 abc2o abc2o bc2 bc2 aco bc3 bc3 bc2o abc3 bc2 abco bco bco s abc2o bc2 as cs bco co abc3 abc3 c3 cs as bco acs bc3 c2o bc2o ac2o bc2 bs bco aco abc3 abc2o bc2 abc2 cs abco co acs abs ac3 c2o bco abc3 aco bc3 as bc2o ac2o bc2 os bco aco cs c2o c2o abc2 abs abco co bco aos c2o c2o acs s aco aco c2o acs ac2o s as aco aco cs os c2o c2o abs s co bco os ac2o c2o bcs s aco ac2 os acs ac2o c2o cos c3 aco abco c2o ac2o bc2o as s co bco cs abc2o c2o c2 bc2 abcs ac2 os bos ac2o c2o cos c3 aco abco os acs c2o abs acos co aco cs ac2 bc2 bs bs abco ac2 bco bos ac2o c2o cos cos bco os os bc2o c3 ac2 cos bco aco cs ac2 bos ac2o acos abco bco bco aos abc2o c2o bs c3 aco ac2 c2 acs c2o abc2o cos bco aco ac2 ac2 abc2o c2 bs abcs aco aco bos bc2 c2o bs acos bc3 ac2 c2 bc2o c2o c2o bcos s aco ac2 ac2 abc2o c2o abcs abcs co aco bc2 bc2 c2o bcos as bc3 bc2 abos os c2o c3 abcos abc3 aco abcs ac2 bc2 bc2o bcos s co aco bc2 bc2 abc2o bs c3 abs ac2 abcs bc2 c2o abc2o abcos abc3 aco abco ac2 bc2 abc2o abc2o s bs aco bc2 bc2 acs

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c2 *32714
e246
h246
b2h288
e3j48
ae2k3418
ah2k3418
ab2h2k3824
k428
b2k4416