Details Page for 0.0702

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1312
P-Portion Size:   89
Tame?   No

MSV File: q-0.0702.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
462
10123
15163
18226
21388
22449
235011
2413031
3319434
3448465
3566277
4176682
4379884
4580685
5481689
19883289
43786489
91392889
3355105689
10462131289

(Click on a heap to see details)

Details for Q54(0.0702):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r | a2=1, b3=b, b2c2=c2, c4=c2, b2cd=cd, c2d=ac2, d2=c2, be=c2, c2e=bc2, de=abc2, e4=e2, cf=c2, b2df=df, f2=c2, b2g=g, cg=c2, dg=ac3, eg=bc3, fg=c2, g2=c2, b2ch=ch, c2h=bc3, dh=abc3, ceh=c2, e2h=e3f, b2fh=fh, efh=c2, gh=bc2, bh3=bh, ch3=ch, fh3=fh, h4=h2, bi=c3, ci=bc2, e3i=ei, fi=bc2, gi=bc2, hi=c2, i2=c2, bj=c2, c2j=bc2, dj=abc2, ce2j=bc3, e2fj=bc3, gj=bc3, hj=efj, eij=bc3, j2=e3j, c2k=ac2, b2dk=dk, dfk=acd, efk=ace, fhk=ach, dik=bc3, cejk=aij, e2jk=abc2, fjk=acj, ik2=aik, cdk3=acdk2, cek3=acek2, fk3=ck3, gk3=agk2, chk3=achk2, cjk3=acjk2, ck4=ack3, dk4=adk3, ek4=aek3, hk4=ahk3, jk4=ajk3, k5=ak4, b2cl=cl, c2l=ac3, dl=c3, el=ae3f, b2fl=fl, gl=ac2, b2hl=hl, ch2l=cl, fh2l=fl, h3l=hl, il=abc2, jl=abc3, fkl=acl, ck3l=ack2l, k4l=ak3l, l2=c2, bm=bh2l, c2m=ac3, dm=c3, gm=ac2, chm=chl, fhm=fhl, e2jm=abc3, fkm=acm, ck3m=ack2m, k4m=ak3m, lm=ae2fm, m2=c2, b2n=n, c2n=bc3, en=c3, hn=c2, in=c2, jn=c3, k4n=ak3n, ln=acdkn, mn=abc2, n2=c2, b2co=co, c3o=co, b2do=do, cdo=aco, ceo=bco, e3o=eo, fo=co, go=co, bho=co, cho=bc2o, eho=co, h3o=ho, io=bco, jo=bc2o, cko=aco, bk2o=abko, dk2o=adko, k4o=ak3o, lo=aco, cmo=ac2o, no=bco, o2=c2, bp=c3, cp=acjm, dp=abc3, fp=afjm, gp=bc2, hp=aefjm, ip=aijm, jp=c3, e2k2p=e2i, k4p=ak3p, lp=abc2, e2mp=mp, k2mp=e2im, np=c2, op=bco, p2=c2, b2q=q, cq=bc3, dq=acdkn, eq=c2, fq=bc3, gq=bc3, hq=c3, iq=c3, jq=c2, k2q=akq, lq=abc3, mq=abc3, nq=c3, oq=bc2o, pq=c3, q2=c2, b2r=r, cr=bc3, dr=dfn, er=c2, fr=bc3, gr=bc3, hr=c3, ir=c3, jr=c2, kr=acn, lr=abc3, mr=abc3, nr=c3, or=bc2o, pr=c3, qr=c2, r2=c2>

P = {a, ab, ab2, c2, e, ae2, e3, abh, bch, bfh, ah2, ab2h2, adi, j, aej, ae3j, k, bk, b2k, aek, ae3k, h2k, b2h2k, ajk, ak2, abk2, ab2k2, ek2, e3k2, abchk2, ah2k2, ab2h2k2, jk2, k3, bk3, b2k3, aek3, ae3k3, h2k3, b2h2k3, ajk3, ak4, abk4, ab2k4, acl, afl, ckl, acm, ace2m, afm, ae2fm, aehm, aeh3m, aeim, acejm, aefjm, aijm, ckm, ce2km, ehkm, eh3km, acek2m, ace3k2m, aehk2m, aeh3k2m, acjk2m, hk3m, h3k3m, bcn, abcdn, bfn, abdfn, bgn, abckn, bcdkn, ack2n, abfk2n, abgk2n, ck3n, bck3n, abko, bdko, k3mo, e2k3mo, h2k3mo, aemp, ekmp, bq, br}

Phi = 1 1 a a ack ack ck ck a c2 b b ck c3 c d ac2 c2 e f g h i j k ac2 c3 c3 ac3 aef ac2 ac2 bc2 l m n c3 ac2 ae3j c2 bc2 o ace3k p abc3 q ac2 ac2 abc2 c3 ac3 abc3 ac2o abc2 r ac3 abc3 c3 c3 ac2 ac2o c2 bc2 c2o ac2 bc3 abc3 afjm bc2 ac2 c3 c3 bc3 ac3 bc2o abc2 bc2 bc2 abc3 bc3 c3 c2o ac2o c2 bc2 aco ac2 bc3 c2o bc2 bc2 ac2 aco c3 ac3 ac3 c2o c2o ac2 ac2 abc3 bc3 c3 c2o ac2o c2 bc2 co ac2 c3 c3 bc2 bc2 ac2 aco c3 ac3 ac3 ac2o c2o ac2 ac2 aco c3 c3 bc3 ac2o c2 bc2 co co c3 c3 c2o c2o abc2 ac2 co ac3 ac3 c3 c2o bc2 bc2 co bco bc3 bc3 ac2o abc2o bc2 aco aco c3 abc3 bc3 c2o abc2 aco co ac3 bco c3 ac2 ac2 bc2 bc2 aco bc3 bc3 ac2o abc3 abc2o bco aco ac2o abc3 ac3 bc2 ac2 aco abco co abc3 abc3 abc2o abc2o bc2 bc2 aco bc3 bc3 bc2o abc3 bc2 abco bco bco

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c2 *16698
e246
h246
b2h288
e3j48
ae2k3418
ah2k3418
ab2h2k3824
k428
b2k4416