Details Page for 0.0702

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1312
P-Portion Size:   89
Tame?   No

MSV File: q-0.0702.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
462
10123
15163
18226
21388
22449
235011
2413031
3319434
3448465
3566277
4176682
4379884
4580685
5481689
19883289
43786489
91392889
3355105689
10462131289

(Click on a heap to see details)

Details for Q437(0.0702):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t | a2=1, b3=b, b2c2=c2, c4=c2, b2cd=cd, c2d=ac2, d2=c2, be=c2, c2e=bc2, de=abc2, e4=e2, cf=c2, b2df=df, f2=c2, b2g=g, cg=c2, dg=ac3, eg=bc3, fg=c2, g2=c2, b2ch=ch, c2h=bc3, dh=abc3, ceh=c2, e2h=e3f, b2fh=fh, efh=c2, gh=bc2, bh3=bh, ch3=ch, fh3=fh, h4=h2, bi=c3, ci=bc2, e3i=ei, fi=bc2, gi=bc2, hi=c2, i2=c2, bj=c2, c2j=bc2, dj=abc2, ce2j=bc3, e2fj=bc3, gj=bc3, hj=efj, eij=bc3, j2=e3j, c2k=ac2, b2dk=dk, dfk=acd, efk=ace, fhk=ach, dik=bc3, cejk=aij, e2jk=abc2, fjk=acj, ik2=aik, cdk3=acdk2, cek3=acek2, fk3=ck3, gk3=agk2, chk3=achk2, cjk3=acjk2, ck4=ack3, dk4=adk3, ek4=aek3, hk4=ahk3, jk4=ajk3, k5=ak4, b2cl=cl, c2l=ac3, dl=c3, el=ae3f, b2fl=fl, gl=ac2, b2hl=hl, ch2l=cl, fh2l=fl, h3l=hl, il=abc2, jl=abc3, fkl=acl, ck3l=ack2l, k4l=ak3l, l2=c2, bm=bh2l, c2m=ac3, dm=c3, gm=ac2, chm=chl, fhm=fhl, e2jm=abc3, fkm=acm, ck3m=ack2m, k4m=ak3m, lm=ae2fm, m2=c2, b2n=n, c2n=bc3, en=c3, hn=c2, in=c2, jn=c3, k4n=ak3n, ln=acdkn, mn=abc2, n2=c2, b2co=co, c3o=co, b2do=do, cdo=aco, ceo=bco, e3o=eo, fo=co, go=co, bho=co, cho=bc2o, eho=co, h3o=ho, io=bco, jo=bc2o, cko=aco, bk2o=abko, dk2o=adko, k4o=ak3o, lo=aco, cmo=ac2o, no=bco, o2=c2, bp=c3, cp=acjm, dp=abc3, fp=afjm, gp=bc2, hp=aefjm, ip=aijm, jp=c3, e2k2p=e2i, k4p=ak3p, lp=abc2, e2mp=mp, k2mp=e2im, np=c2, op=bco, p2=c2, b2q=q, cq=bc3, dq=acdkn, eq=c2, fq=bc3, gq=bc3, hq=c3, iq=c3, jq=c2, k2q=akq, lq=abc3, mq=abc3, nq=c3, oq=bc2o, pq=c3, q2=c2, b2r=r, cr=bc3, dr=dfn, er=c2, fr=bc3, gr=bc3, hr=c3, ir=c3, jr=c2, kr=acn, lr=abc3, mr=abc3, nr=c3, or=bc2o, pr=c3, qr=c2, r2=c2, b2s=s, c2s=s, ds=as, es=bs, fs=cs, gs=cs, hs=bcs, is=bcs, js=bs, ks=as, ls=acs, ms=acs, ns=bcs, ps=bcs, qs=bs, rs=bs, s2=c2, b2t=t, c2t=t, dt=at, et=bt, ft=ct, gt=ct, ht=bct, it=bct, jt=bt, kt=at, lt=act, mt=act, nt=bct, pt=bct, qt=bt, rt=bt, t2=c2>

P = {a, ab, ab2, c2, e, ae2, e3, abh, bch, bfh, ah2, ab2h2, adi, j, aej, ae3j, k, bk, b2k, aek, ae3k, h2k, b2h2k, ajk, ak2, abk2, ab2k2, ek2, e3k2, abchk2, ah2k2, ab2h2k2, jk2, k3, bk3, b2k3, aek3, ae3k3, h2k3, b2h2k3, ajk3, ak4, abk4, ab2k4, acl, afl, ckl, acm, ace2m, afm, ae2fm, aehm, aeh3m, aeim, acejm, aefjm, aijm, ckm, ce2km, ehkm, eh3km, acek2m, ace3k2m, aehk2m, aeh3k2m, acjk2m, hk3m, h3k3m, bcn, abcdn, bfn, abdfn, bgn, abckn, bcdkn, ack2n, abfk2n, abgk2n, ck3n, bck3n, abko, bdko, k3mo, e2k3mo, h2k3mo, aemp, ekmp, bq, br}

Phi = 1 1 a a ack ack ck ck a c2 b b ck c3 c d ac2 c2 e f g h i j k ac2 c3 c3 ac3 aef ac2 ac2 bc2 l m n c3 ac2 ae3j c2 bc2 o ace3k p abc3 q ac2 ac2 abc2 c3 ac3 abc3 ac2o abc2 r ac3 abc3 c3 c3 ac2 ac2o c2 bc2 c2o ac2 bc3 abc3 afjm bc2 ac2 c3 c3 bc3 ac3 bc2o abc2 bc2 bc2 abc3 bc3 c3 c2o ac2o c2 bc2 aco ac2 bc3 c2o bc2 bc2 ac2 aco c3 ac3 ac3 c2o c2o ac2 ac2 abc3 bc3 c3 c2o ac2o c2 bc2 co ac2 c3 c3 bc2 bc2 ac2 aco c3 ac3 ac3 ac2o c2o ac2 ac2 aco c3 c3 bc3 ac2o c2 bc2 co co c3 c3 c2o c2o abc2 ac2 co ac3 ac3 c3 c2o bc2 bc2 co bco bc3 bc3 ac2o abc2o bc2 aco aco c3 abc3 bc3 c2o abc2 aco co ac3 bco c3 ac2 ac2 bc2 bc2 aco bc3 bc3 ac2o abc3 abc2o bco aco ac2o abc3 ac3 bc2 ac2 aco abco co abc3 abc3 abc2o abc2o bc2 bc2 aco bc3 bc3 bc2o abc3 bc2 abco bco bco s abc2o bc2 as cs bco co abc3 abc3 c3 cs as bco acs bc3 c2o bc2o ac2o bc2 bs bco aco abc3 abc2o bc2 abc2 cs abco co acs abs ac3 c2o bco abc3 aco bc3 as bc2o ac2o bc2 os bco aco cs c2o c2o abc2 abs abco co bco aos c2o c2o acs s aco aco c2o acs ac2o s as aco aco cs os c2o c2o abs s co bco os ac2o c2o bcs s aco ac2 os acs ac2o c2o cos c3 aco abco c2o ac2o bc2o as s co bco cs abc2o c2o c2 bc2 abcs ac2 os bos ac2o c2o cos c3 aco abco os acs c2o abs acos co aco cs ac2 bc2 bs bs abco ac2 bco bos ac2o c2o cos cos bco os os bc2o c3 ac2 cos bco aco cs ac2 bos ac2o acos abco bco bco aos abc2o c2o bs c3 aco ac2 c2 acs c2o abc2o cos bco aco ac2 ac2 abc2o c2 bs abcs aco aco bos bc2 c2o bs acos bc3 ac2 c2 bc2o c2o c2o bcos s aco ac2 ac2 abc2o c2o abcs abcs co aco bc2 bc2 c2o bcos as bc3 bc2 abos os c2o c3 abcos abc3 aco abcs ac2 bc2 bc2o bcos s co aco bc2 bc2 abc2o bs c3 abs ac2 abcs bc2 c2o abc2o abcos abc3 aco abco ac2 bc2 abc2o abc2o s bs aco bc2 bc2 acs t bc3 bc3 bco aco bos bc2o cs abc3 cos bco bc2 abos ac2 abc2o abc3 t acos aco bc2 cs acs t bcos s ac3 bs aco abcs ac2 abc3 abc3 bco bc2 abc2 aco cs abcs c2o c3 bco bc2 cs acs t t bcos bco ct ct abcs cs ac2o bco s ct abc2 bc2 cs abcs c2o abc3 as co co acs t bc3 as as ct ac2 ac2 cs ac2o ac3 s s abc2 ac2 bc2 bc2 c2o abc3 as co at acs cs bc3 abcos abc3 bs ac2 t cs bcs ct s s abc2 ac2 bcs bc2 bt bs bs bos c2 bc2 bcs t c3 abc3 as abt bct cs bcs aos abc3 s as ac2 cs bc2 abc3 act as abs bc2 bc2 cs cs c3 abc3 acos bc2 ac2 c2o bt at bc3 cot as acos cs bc2 acs t as ct bc2 abcs bcs t c3 abc3 abc3 bc2 abt cs ot at bc3 bs s act ac2 abt abcs t as act ct abcs bot acs t abc3 acos bcos bc2 bcs bcs abcs abt abt as acot c2 abcs acs c2o t abt ct ct ac2 t bco abc3 abt abc2o ot ot bcs abcs cot cot as as abct abos bco abt t abc2o cos aot aot ac2 bco cot ac3 abc2o c2o ot abc2 abt os cot bcot abc2o ot ct bco cs t abc2o bcot c2o aot st t c3 s as as acos abc2 aos aco bcot ast abc2o ct ct bco co ac3 abt c2o c2o aot act os co s abc3 as ac2o ot aos aco cot st abc2o ac2o abt bc2 aco abcot cot c2o c2o bcos aot os co bos abc3 cot cst cs bst co abcs as acot ac2o bcos aot abos os cot acot bc2 cst abct ot c3 bos cot abc2 bc2o bct abt st bco cot abc2o cos bcos bct bos bos abc3 cot bs aot acos ot co abcs abt cot as bot bst abot os abcst acot bc2o ot aot bco aco abos t bc2o s acos ot os aos abt cot as st bco acs os os bcot abcst bs aot act os os abt bcos as as t aost co cot cot acos bcos aot abos aos os bcot cos ac2 aot bc2 os abos abcst s cos acos ot ot os aos t abs acos bct abc3 abos os acot bc2o cos c2o act os os abcot bc2 cos as as ot abcs abcs cot t bc2 bs bct bos aco bcs at abt cos abot abct abos bos acot cos c2o as ct acs aco cot abc2o bcos bs bs st os os abt t cos aot abct ast abcot bc2 bc2o cst acos ot s aco cot t abcst abt ot ast bos bos

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c2 *64746
e246
h246
b2h288
e3j48
ae2k3418
ah2k3418
ab2h2k3824
k428
b2k4416