Details Page for 0.1067

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2086
P-Portion Size:   162
Tame?   No

MSV File: q-0.1067.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
8102
12123
13163
194610
217014
2237647
2542250
2743252
2944253
3048256
3148856
3349456
3454858
3556261
3660868
3776884
382086162

(Click on a heap to see details)

Details for Q30(0.1067):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q | a2=1, b4=b2, b2c2=b2, c5=c3, b2d=ab2, bc4d=bc2d, d2=b2, be=b2c, c3e=bc4, cde=bd, ce2=b2c, de2=ab2, e4=e2, bf=b2c, c3f=bc4, df=de, cef=b2c, cf2=b2c, e2f2=f2, f3=ef2, bg=b2, c4g=c2g, dg=bd, eg=b2c, fg=b2c, g2=b2, b2h=b2c, bc4h=bc2h, dh=ab2c, ceh=bh, e2h=b2c, fh=eh, gh=bh, h2=b2, bi=ab3, c4i=c2i, di=b2, cei=ab3, cfi=ab3, e2fi=ae2f, f2i=af2, gi=ab3, hi=ab2c, c2i2=b2, ei2=aei, fi2=afi, i3=ai2, b2j=ab2, bdj=abd, c2dj=ac2d, dej=ade, e2j=af2, fj=ej, cgj=c2ej, hj=ab2c, cij=ac3i, eij=ef2, i2j=af2, bj2=agj, c3j2=ac3j, dj2=adj, cej2=agj, gj2=agj, ij2=aij, j3=aj2, b2k=ab2, bc3k=bck, c4k=c2k, c2ek=bck, fk=ek, c3gk=cgk, hk=ab2c, c3ik=cik, eik=ae3k, i2k=e2k, bjk=agk, djk=adk, cejk=agk, gjk=agk, ijk=aik, j2k=ajk, k2=b2, b2l=ab3, bc2dl=ac2i, e2l=ab3, efl=ab3, f2l=ab3, il=b3, bcdkl=acik, l2=b2, m=ag, b2n=ab2c, bc2n=cgk, bdn=dek, cdn=dk, c2en=gk, e2n=ab2c, fn=en, gn=cen, hn=ab2, cin=c2ik, ein=b3, i2n=aci2, bjn=acen, c2jn=ac2n, djn=adn, cejn=acen, ijn=acik, j2n=ajn, kn=b2c, c2ln=acjkl, celn=aejkl, cjln=jkl, n2=b2, bo=b3c, c2o=b2c, do=ab2c, eo=b3, fo=b3, go=b3c, ho=b2, io=ao, jo=ab2c, ko=ab2c, lo=ab3c, no=aco, o2=b2, bp=abhl, dp=adek, ep=aehl, fp=aehl, gp=abhl, hp=b3, ip=ab3c, jp=cen, kp=ab3c, lp=aekl, np=ab3, op=b3, p2=b2, bq=b2c, c3q=abc2k, c2dq=abcdk, eq=b2, fq=b2, gq=b2c, iq=ab3c, jq=cen, kq=ab3c, nq=ab3, oq=b3, pq=ahlq, q2=b2>

P = {a, b2, c2, c4, ad, ac2d, ac4d, ae, ae2, ae3, f2, ch, c3h, aci, ac3i, e3i, aefi, i2, aj, ac2j, ac4j, dj, j2, c2j2, ac2k, dk, c2dk, ek, e3k, c2jk, aejk, abl, ac2l, bc3l, bdl, ac2el, agl, c3gl, abchl, aehl, bjl, c2jl, bc4jl, gjl, bkl, c2kl, abdkl, gkl, c2gkl, cln, adeln, aejln, o, ac4p, c2lq, ahlq}

Phi = 1 a 1 1 b b b ab c a a d e f b b g h b2c i j k l ag ag n b2c o b2c p q

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *8418
c448
e246
f2422
ae2i46
i224
ac4j412
j224