Details Page for 0.1067

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2086
P-Portion Size:   162
Tame?   No

MSV File: q-0.1067.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
8102
12123
13163
194610
217014
2237647
2542250
2743252
2944253
3048256
3148856
3349456
3454858
3556261
3660868
3776884
382086162

(Click on a heap to see details)

Details for Q38(0.1067):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x | a2=1, b4=b2, b2c2=b2, bc5=bc3, c6=c4, b2d=ab2, bc4d=bc2d, c5d=c3d, d2=b2, be=b2c, c3e=bc4, cde=bd, ce2=b2c, de2=ab2, e4=e2, bf=b2c, c3f=bc4, df=de, cef=b2c, cf2=b2c, e2f2=f2, f3=ef2, b2g=b2c, bc4g=bc2g, c5g=c3g, dg=ab2c, ceg=bg, e2g=b2c, fg=eg, g2=b2, bh=ab3, c4h=c2h, dh=b2, ceh=ab3, cfh=ab3, e2fh=ae2f, f2h=af2, gh=ab2c, eh2=aeh, fh2=afh, h3=ah2, b2i=ab2, bdi=abd, c2di=ac2d, dei=ade, e2i=af2, c2fi=c2ei, efi=af2, f2i=af2, gi=ab2c, c3hi=chi, ehi=ef2, fhi=ef2, ch2i=ac3h2, bci2=ac2ei, di2=adi, cei2=bi2, fi2=ei2, hi2=ahi, i3=ai2, b2j=ab2, bc3j=bcj, c4dj=c2dj, c2ej=bcj, fj=ej, gj=ab2c, c3hj=chj, ehj=ae3j, c5ij=c3ij, dij=adj, ceij=bij, chij=achj, h2ij=ah2j, bi2j=abij, ci2j=acij, ei2j=aeij, j2=b2, b2k=ab3, c5k=c3k, e2k=ab3, efk=ab3, f2k=ab3, hk=b3, c3i2k=ac3ik, c4jk=c2jk, i2jk=aijk, k2=b2, bl=ab2, c4l=c2l, el=ab2c, fl=ab2c, hl=b3, dil=adl, i2l=ail, c3jl=cjl, ijl=ajl, l2=b2, b2m=ab2c, bc2m=abcij, bdm=dej, cdm=dj, c2em=abij, e2m=ab2c, fm=em, gm=ab2, c3hm=chm, ehm=b3, ch2m=ab2, bim=acem, c2im=ac2m, dim=adm, ceim=acem, him=ac2hm, i2m=aim, jm=b2c, c2km=acijk, cekm=aeijk, cikm=ijk, clm=jl, ilm=alm, m2=b2, bn=b3c, c2n=b2c, dn=ab2c, en=b3, fn=b3, gn=b2, hn=an, in=ab2c, jn=ab2c, kn=ab3c, ln=ab3c, mn=acn, n2=b2, bo=abgk, c5o=c3o, do=adej, eo=aegk, fo=aegk, go=b3, ho=ab3c, io=cem, jo=ab3c, c2ko=abcjk, lo=agkl, mo=ab3, no=b3, o2=b2, bp=b2c, c3p=abc2j, c2dp=abcdj, ep=b2, fp=b2, hp=ab3c, ip=cem, jp=ab3c, lp=ab2c, mp=ab3, np=b3, op=agkp, p2=b2, bq=b2c, c5q=c3q, dq=de, eq=b2, fq=b2, gq=eg, hq=ab3c, ciq=abi2, i2q=aiq, jq=cem, ikq=aei2k, lq=ab2c, mq=aeim, nq=b3, oq=aegk, pq=b2, q2=b2, br=ab2, c3r=cr, er=ab2c, fr=ab2c, gr=ab3c, hr=b3, ir=ar, jr=b3, kr=b2, lr=b2, mr=b3c, nr=ab3c, or=ab2c, pr=ab2c, qr=ab2c, r2=b2, bs=bijk, c3s=c3ijk, ds=adjk, c2es=bcijk, e2s=ab3, fs=eijk, gs=ab3c, hs=b3, is=aijk, js=b3, ks=agkp, ls=ajkl, ms=b3c, ns=ab3c, os=ab2c, ps=ab2c, qs=eijk, rs=b2, s2=b2, bt=bijk, c4t=c2t, et=es, ft=eijk, gt=ab3c, ht=b3, c2it=ac2t, dit=adt, i2t=ait, jt=b3, c3kt=ckt, dkt=bdjk, ikt=akt, c3lt=clt, dlt=adjkl, ilt=alt, klt=ab3, mt=b3c, nt=ab3c, ot=ab2c, pt=ab2c, qt=eijk, rt=abijk, st=b2, t2=b2, bu=ab3, cu=adek, du=b2, eu=ab3c, fu=ab3c, gu=ab2c, hu=b2, iu=au, ju=adekm, ku=b3, lu=b3, nu=ab2c, ou=ab3c, pu=ab3c, qu=ab3c, ru=b3, su=b3, tu=b3, u2=b2, b2v=ab2c, bcv=ac2gp, dv=b2c, ev=ac2gp, fv=ac2gp, gv=ab2, c2hv=hv, h2v=ab2c, biv=b3c, c2iv=iv, hiv=c3dkl, bjv=b3c, hjv=acdjkl, i2jv=aijv, c2kv=b3c, ikv=ab3c, jkv=ab3c, lv=b3c, mv=acijv, nv=ab2, ov=ab3, pv=ab3, qv=ab3, rv=b3c, sv=b3c, tv=b3c, uv=b2c, v2=b2, bc4w=bc2w, e2w=b2w, c2fw=bcw, efw=b2w, f2w=b2w, c3hw=chw, ehw=ab3cw, fhw=ab3cw, c2h2w=h2w, diw=adw, c2eiw=bciw, cfiw=biw, c2hiw=hiw, h2iw=ah2w, bi2w=abiw, ei2w=afiw, c5jw=c3jw, h2jw=ac2hjw, hijw=ac2hjw, c2i2kw=ac2ikw, c3lw=clw, glw=ab3cw, ilw=alw, jlw=b3w, bmw=aeijw, cemw=aeijw, hmw=b2cw, imw=amw, ckmw=aijkw, lmw=b3cw, nw=b2cw, ckow=abjkw, cpw=abjw, dpw=adejw, gpw=b3w, kpw=kow, iqw=fiw, c2sw=c2ijkw, ltw=abdjkw, bvw=ab3cw, c4vw=c2vw, jvw=abgkw, kvw=b3cw, w2=b2, b2x=b2w, bc4x=bc2x, e2x=b2w, c2fx=bcx, efx=b2w, f2x=b2w, c3hx=chx, ehx=ab3cw, fhx=ab3cw, c2h2x=h2x, dix=adx, c2eix=bcix, cfix=bix, hix=h2x, bi2x=abix, ei2x=afix, c5jx=c3jx, h2jx=ac2hjx, c2i2kx=ac2ikx, c3lx=clx, dlx=b3w, glx=ab3cw, ilx=alx, jlx=b3w, klx=b2w, bmx=aeijx, cemx=aeijx, hmx=b2cw, imx=amx, ckmx=aijkx, lmx=b3cw, nx=b2cw, ckox=abjkx, cpx=abjx, dpx=adejx, gpx=b3w, kpx=kox, iqx=fix, drx=alx, c2sx=c2ijkx, ltx=abdjkx, bvx=ab3cw, c4vx=c2vx, hvx=abc2gkx, ivx=abc2gkx, jvx=abgkx, kvx=b3cw, bgwx=agl, bdjwx=adjl, dejwx=adlm, bijwx=jl, eijwx=lm, x2=b2>

P = {a, b2, c2, c4, ad, ac2d, ac4d, ae, ae2, ae3, f2, cg, c3g, ach, ac3h, e3h, aefh, h2, c2h2, ai, ac2i, ac4i, di, chi, ah2i, i2, c2i2, c4i2, ac2j, ac4j, dj, c2dj, ej, e3j, ac2h2j, c2ij, c4ij, aeij, abk, ac2k, bc3k, bdk, bc3dk, ac2ek, abcgk, aegk, bik, c2ik, bc4ik, abi2k, bjk, c2jk, abdjk, abijk, abc2ijk, kl, ac3kl, adkl, ac3dkl, cgkl, aikl, ac2ikl, ajkl, ac2jkl, djkl, ckm, adekm, aeikm, n, ac4o, c2kp, agkp, ackq, c4kq, c3dt, kt, lt, au, av, ac2v, c5v, hv, iv, ai2v, c3jv, bkv, aw, ac3w, ac5w, ac4gw, hw, c2hw, iw, ahiw, ai2w, ac2i2w, ac4i2w, cjw, c3jw, ac3djw, bkw, abc2dkw, c2dklw, vw, c3vw, achvw, acivw, ci2vw, ac4x, c4ix, ac4i2x, c4jx, ac4ijx, ac2kx, c5mx, wx, c2wx, ac4wx, adwx, ac2dwx, ac4dwx, cgwx, c3gwx, ahwx, c2hwx, ah2wx, aiwx, c2iwx, c4iwx, ai2wx, ac2i2wx, ac4i2wx, ajwx, ac2jwx, djwx, c2djwx, hjwx, ijwx, abkwx, ac2kwx, bc3kwx, bdkwx, bc3dkwx, ac2ekwx, aegkwx, bikwx, bc2ikwx, bjkwx, c2jkwx, acmwx, ac3mwx, ac5mwx, ekmwx, adekmwx, ac4owx, ackqwx, c4kqwx, c3dtwx, ktwx, auwx, acvwx, c3vwx}

Phi = 1 a 1 1 b b b ab c a a d e f b b cq g b2c h i j k l acq m b2c n b2c o p q r s t u v w x

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *161992
c4410
e246
f2422
ae2h46
h224
c2h2416
ah2i24
i224
c4i2420