Details Page for 0.1067

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   2086
P-Portion Size:   162
Tame?   No

MSV File: q-0.1067.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
8102
12123
13163
194610
217014
2237647
2542250
2743252
2944253
3048256
3148856
3349456
3454858
3556261
3660868
3776884
382086162

(Click on a heap to see details)

Details for Q33(0.1067):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s | a2=1, b4=b2, b2c2=b2, c5=c3, b2d=ab2, bc4d=bc2d, d2=b2, be=b2c, c3e=bc4, cde=bd, ce2=b2c, de2=ab2, e4=e2, bf=b2c, c3f=bc4, df=de, cef=b2c, cf2=b2c, e2f2=f2, f3=ef2, b2g=b2c, bc4g=bc2g, dg=ab2c, ceg=bg, e2g=b2c, fg=eg, g2=b2, bh=ab3, c4h=c2h, dh=b2, ceh=ab3, cfh=ab3, e2fh=ae2f, f2h=af2, gh=ab2c, c2h2=b2, eh2=aeh, fh2=afh, h3=ah2, b2i=ab2, bdi=abd, c2di=ac2d, dei=ade, e2i=af2, fi=ei, gi=ab2c, chi=ac3h, ehi=ef2, h2i=af2, bci2=ac2ei, c3i2=ac3i, di2=adi, cei2=bi2, hi2=ahi, i3=ai2, b2j=ab2, bc3j=bcj, c4j=c2j, c2ej=bcj, fj=ej, gj=ab2c, c3hj=chj, ehj=ae3j, h2j=e2j, dij=adj, ceij=bij, hij=ahj, i2j=aij, j2=b2, b2k=ab3, bc2dk=ac2h, e2k=ab3, efk=ab3, f2k=ab3, hk=b3, bcdjk=achj, k2=b2, bl=ab2, c4l=c2l, dl=abd, el=ab2c, fl=ab2c, gl=abg, hl=b3, il=bi2, jl=bij, l2=b2, b2m=ab2c, bc2m=abcij, bdm=dej, cdm=dj, c2em=abij, e2m=ab2c, fm=em, gm=ab2, chm=c2hj, ehm=b3, h2m=ach2, bim=acem, c2im=ac2m, dim=adm, ceim=acem, him=achj, i2m=aim, jm=b2c, c2km=acijk, cekm=aeijk, cikm=ijk, lm=acem, m2=b2, bn=b3c, c2n=b2c, dn=ab2c, en=b3, fn=b3, gn=b2, hn=an, in=ab2c, jn=ab2c, kn=ab3c, ln=ab3c, mn=acn, n2=b2, bo=abgk, do=adej, eo=aegk, fo=aegk, go=b3, ho=ab3c, io=cem, jo=ab3c, ko=aejk, lo=bgk, mo=ab3, no=b3, o2=b2, bp=b2c, c3p=abc2j, c2dp=abcdj, ep=b2, fp=b2, hp=ab3c, ip=cem, jp=ab3c, lp=ab2c, mp=ab3, np=b3, op=agkp, p2=b2, bq=b2c, cq=al, dq=de, eq=b2, fq=b2, gq=eg, hq=ab3c, i2q=aiq, jq=cem, ikq=aei2k, lq=ab2c, mq=aeim, nq=b3, oq=aegk, pq=b2, q2=b2, r=ab3, bs=bijk, c3s=c3ijk, ds=adjk, es=abkm, fs=eijk, gs=ab3c, hs=b3, is=aijk, js=b3, ks=agkp, ls=abijk, ms=b3c, ns=ab3c, os=ab2c, ps=ab2c, qs=eijk, s2=b2>

P = {a, b2, c2, c4, ad, ac2d, ac4d, ae, ae2, ae3, f2, cg, c3g, ach, ac3h, e3h, aefh, h2, ai, ac2i, ac4i, di, i2, c2i2, ac2j, dj, c2dj, ej, e3j, c2ij, aeij, abk, ac2k, bc3k, bdk, ac2ek, abcgk, aegk, bik, c2ik, bc4ik, abi2k, bjk, c2jk, abdjk, abijk, abc2ijk, kl, ac3kl, ckm, adekm, aeikm, n, ac4o, c2kp, agkp}

Phi = 1 a 1 1 b b b ab c a a d e f b b al g b2c h i j k l l m b2c n b2c o p q ab3 s

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *8430
c448
e246
f2422
ae2h46
h224
ac4i412
i224