Details Page for 0.1367

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   526
P-Portion Size:   57
Tame?   No

MSV File: q-0.1367.msv

Growth Pattern:

Heap   Q-Size   P-Size
121
462
8102
12123
13164
19327
214410
234811
286211
296411
307012
327413
347813
359416
3710617
3912021
5129040
5331246
7132249
7941057
8041457
9043057
48346257
157352657

(Click on a heap to see details)

Details for Q90(0.1367):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w | a2=1, b3=b, c3=c, bd=bc, c2d=d, d2=b2c2, bce=abc, de2=ade, e3=ae2, bf=bc, c2f=f, def=cde, e2f=ce2, f2=c2e2, bg=abc, eg=ade, dfg=ab2c, g2=b2c2, bch=abc, eh=acde, c2gh=gh, dgh=adfh, fgh=b2c2, h2=b2c2, bi=bh, ci=dh, di=ab2c, ei=b2c2, fi=cdfh, gi=acdfh, hi=b2c2, i2=b2c2, bj=bc, c2ej=ej, fj=ce2j, dgj=ab2c, c2hj=hj, dhj=dfh, ghj=b2c2, ij=cdfh, j2=b2c2, bk=abc, c2k=k, dk=dg, ek=ade, fk=cde, gk=b2c2, hk=gh, ik=acdfh, jk=dej, k2=b2c2, b2l=l, cl=bc, dl=bc, e2l=ael, fl=bc, gl=abc, hl=abc2, il=abc2, jl=bc, kl=abc, l2=b2c2, em=ac2m, fm=cm, gm=adm, hm=acdm, im=ab2c2m, c2jm=jm, km=adm, lm=bc2m, m2=b2c2, bn=bm, dn=b2cm, en=ac2n, fn=cn, gn=ab2cm, hn=ab2c2m, in=ab2c2m, c2jn=jn, kn=ab2cm, ln=bc2m, mn=b2c2, n2=b2c2, bo=abc2m, c2eo=eo, e2o=aeo, fo=aceo, go=deo, c2ho=ho, dho=b2cm, io=b2c2m, c2jo=jo, ejo=ajo, hjo=acdjo, ko=deo, lo=abc2m, no=ab2c2, o2=b2c2, bp=abc2m, dp=do, c2ep=ep, e2p=aep, fp=acep, gp=deo, hp=ho, ip=b2c2m, c2jp=jp, ejp=ajp, kp=deo, lp=abc2m, mp=mo, np=ab2c2, op=b2c2, p2=b2c2, bcq=abc, eq=ac2q, fq=cq, gq=adq, hq=acdq, iq=b2c2, c2jq=jq, kq=adq, lq=abc2, bmq=abc2m, c2mq=mq, c2nq=nq, c2oq=oq, c2pq=pq, q2=b2c2, bcr=b2c2m, er=ac2r, fr=cr, gr=adr, hr=acdr, ir=abcm, c2jr=jr, kr=adr, lr=b2cm, mr=bc, nr=bc, or=abc, pr=abc, qr=abcm, r2=b2c2, bs=bc2m, c2s=s, ds=acnq, es=as, fs=cs, gs=cnq, hs=nq, is=ab2c2m, ks=cnq, ls=bc2m, ms=b2c2, ns=b2c2, os=ab2c2, ps=ab2c2, qs=ab2c2m, rs=bc, s2=b2c2, bt=abc, ct=ab2c2, dt=ab2c2, et=b2c, ft=ab2c2, gt=b2c2, ht=b2c, it=b2c, jt=ab2c2, kt=b2c2, lt=abc, nt=ab2cm, pt=ot, qt=b2c, rt=abc2m, st=ab2cm, t2=b2c2, bu=bcm, c2u=u, eu=au, fu=cu, gu=adu, hu=acdu, iu=ab2cm, ku=adu, lu=bcm, mu=admo, nu=admo, ou=dmo, pu=ab2c, ru=bc2, tu=ab2c2m, u2=b2c2, bv=abc, cv=ab2c2, dv=ab2c2, ev=b2c, fv=ab2c2, gv=b2c2, hv=b2c, iv=b2c, jv=ab2c2, kv=b2c2, lv=abc, mv=ab2cm, nv=ab2cm, ov=b2cm, pv=b2cm, qv=b2c, rv=abc2m, sv=ab2cm, uv=ab2c2m, v2=b2c2, b2w=w, c2w=w, dw=cw, ew=aw, fw=cw, gw=acw, hw=aw, iw=aw, jw=cw, kw=acw, lw=bw, nw=mw, ow=amw, pw=amw, qw=aw, rw=bcmw, sw=mw, tw=acw, uw=cmw, vw=acw, w2=b2c2>

P = {a, b2, ac, ac2, b2c2, acd, abe, acde, e2, b2e2, c2e2, af, acf, adf, cg, dg, abh, acj, ac2j, adj, adej, ce2j, agj, ck, bel, abm, aco, ac2o, ado, ho, amo, ac2mo, acdmo, acjmo, adjmo, acp, ac2p, cq, jq, coq, joq, acmoq, ajmoq, cpq, jpq, ar, ab2r, ac2r, acdr, acjr, adjr, at, mot, qu, cdqu, cjqu, djqu}

Phi = 1 a a 1 bc bc abc abc b b a ab2c2 c d bc bc abc bc2 bc2 e ab2e2 f ade g abc abc bc2 bc h i j b2c k fh bq l bc m n o p b2c bcm bq bq bc bc2 b2m ab2c ab2c b2c q ab2c2 r bc2 bc2 abc abc ab2c b2c q ab2c2 r bc2 bc bc abc s b2c q ab2c2 t bcm bc bc abc s anq b2cm u v bcm bcm abcm abc2 s anq nq nq ab2c w abcm b2c abc2 abc bc2 bc2 b2c2m ab2c2 ab2c2 b2c bc abcm abc bc2 bc2 b2c2m ab2c2 ab2c2 b2c b2c bcm abc abc bc2 bc b2c2m ab2c2 ab2c w bcm bcm abc2 abc2 ab2c2m b2c2m b2c2m ab2c ab2c abcm bcm abc2 abc2 bc2 b2c2m b2c2m ab2c ab2c b2c abcm bcm bc2m bc2 w ab2c2m ab2c b2c b2c abcm abcm bcm bc2 bc2 w b2cm ab2c2 b2c abcw ab2c bcm abcm abc2m w w b2c2m b2c2m abcw ab2c bcm bcm abcm bc2 w w b2cm b2c ab2c bcw bcw abcm bc2 abc2 w b2cm b2c2m b2c ab2c bw abcm bc bc2 abc2 abc2 ab2c2m b2c2m b2c2m bw abcm abcm bcm abc2 w w b2c2m b2c2m bcw bcw bcm bc2 bc2 w w b2c2m b2c2m ab2c ab2c bcw bcm abc2 abc2 w w b2c2m b2c2m ab2c bcw bcw bcm abc2 bc2m w ab2c2m b2c2m ab2c ab2c bcw abcm abcm abc2 abc2m w b2cm ab2c2m ab2c bcw bcw abcm bcm bcm w w b2cm ab2c ab2c bcw bcw bcm abc2 abc2 w b2c2m b2c2m ab2c ab2c bcw bcw abc2 abc2 abcm w w ab2c ab2c bcw bcw abc2 abcm abcm w w ab2c b2c2m bmw abcw bcw bcm bcm abc2m w b2c2m ab2c ab2c abcw bcw bcm bcm abcm aw w b2c2m b2c b2cm b2cm ab2c bcm bc2 abcm w ab2c b2c2m b2c b2cm abcw abc2 abc2 bc2 bc2m ab2c w ab2c2m b2c2m b2cm bcw abc2 abcm bc2m w w ab2c ab2c b2c2m bcw bcw abcm bc2m bcm w w b2c ab2c b2c2m bcw bcw abc2m abc2 bcm w w b2c2m ab2c bcw bcw abc2m bcm bcm abcm w bcmw ab2c ab2c ab2c2m bcw bcw abc2 abc2 w w ab2c b2c2m b2c2m bcw bcw bcm bcm abcm w w b2c2m b2c2m bcw bcw bcm bcm bc2 aw w b2c b2c ab2c2m abcw bcm bcm abcm abcm w b2c2m ab2c ab2c2 bmw bcmw abc2 abc2 abcm amw w ab2c ab2c ab2c2m abcmw bcw bcw abc2 acmw aw aw ab2c ab2c bmw b2c2m bcw abc2 abc2m bcm amw ab2c ab2c b2c2m b2c2m abcw abc2 abc2 bcm bcm aw ab2c ab2c b2c2m b2c2m abcw abc2m bcm bcm aw amw ab2c2m ab2c b2c2m abmw bcw abc2 abc2 mw w w ab2c ab2c b2c2m abcw abcm abc2 abc2 bcm w w ab2c ab2c abcmw abcw abcm abc2 abc2 amw aw cmw b2c2m abcmw abcw abcw bcm amw mw aw b2c

Monoid Structure

Idempotent  |G|  |Arch|
122
b244
c244
b2c2 *32392
e224
b2e248
c2e2416