Details Page for 0.2644

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1190
P-Portion Size:   75
Tame?   No

MSV File: q-0.2644.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
362
5102
8184
9224
12285
13365
14406
15487
16649
178011
208212
229014
239414
2910215
3630635
4231838
4332639
4534239
4838242
4945850
5147855
5552656
5663465
5864265
6367068
7269472
7969872
8973072
9974275
26380675
67493475
1748119075

(Click on a heap to see details)

Details for Q72(0.2644):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A | a2=1, b4=b2, b3c=bc, bc2=b3, c3=c, bd=ab3, c2d=d, d4=ad3, be=abc, c2e=e, d2e=ab2c, e5=ace4, b2f=ab3, cf=abc, df=b3, ef=bc, f2=b2, b3g=bg, c2g=g, e2g=aceg, fg=abg, g2=b2, bh=abg, c2h=h, d3h=ad2h, e2h=ceg, fh=bg, gh=ab2, h2=b2, bi=abc, c2i=i, d2i=ab2c, dei=acde3, e2i=ace4, fi=bc, gi=eg, hi=aeg, i2=e4, bj=bc, c2j=j, d2j=b2c, de2j=cde4, e3j=ae4, fj=abc, gj=aeg, hj=eg, ij=ace2j, j2=e4, bk=b2cg, c2k=k, d2k=bcg, e2k=cdek, fk=ab2cg, gk=bc, hk=abc, ik=adek, jk=bg, k2=b2, bl=abg, d2l=d2h, e2l=aceh, fl=bg, gl=ab2, hl=b2, il=eh, jl=eg, kl=abc, l2=b2, bm=bg, c2m=m, d3m=ad2m, e2m=cel, fm=abg, gm=b2, hm=ab2, im=ael, jm=eh, km=bc, lm=ab2, m2=b2, bn=ab3, c2n=n, d3n=ad2n, en=de3, fn=b3, hn=agn, in=acde4, jn=cde4, kn=abcg, dln=adgn, dmn=ad2gn, n2=b2, bo=bc, c2o=o, d2o=ado, eo=ab2, fo=abc, ho=ago, io=ab2, jo=b2, ko=bg, lo=ago, mo=adgo, no=ab2c, o2=b2, bp=bcg, c2p=p, d3p=ad2p, ep=cem, fp=abcg, dgp=agp, hp=agp, ip=acel, jp=ceh, kp=b3, lp=agp, mp=b2c, np=del, op=b2g, p2=b2, bq=bcg, c2q=q, d3q=ad2q, fq=abcg, d2gq=gp, d2hq=ab2c, iq=ace2q, jq=ae3q, kq=b3, elq=achq, d2mq=b2c, emq=clq, nq=de2q, oq=b2g, pq=cmq, q2=b2, br=bg, c2r=r, d3r=ad2r, er=em, fr=abg, gr=b2, hr=ab2, ir=ael, jr=eh, kr=bc, lr=ab2, mr=b2, nr=cdel, or=b2cg, pr=b2c, qr=mq, r2=b2, bs=bc, c2s=s, ds=agp, e2s=b2c, fs=abc, gs=b2cg, hs=ab2cg, is=ab2, js=b2, ks=bg, ls=ab2cg, ms=b2cg, ns=ab2c, os=b2, ps=b2g, qs=b2g, rs=b2cg, s2=b2, b3t=bt, c2t=t, d2t=b2t, de2t=acdet, e3t=ace2t, ft=abt, b2gt=gt, dgt=agt, egt=acgt, ht=agt, it=ace2t, jt=ce2t, kt=bcgt, lt=agt, mt=gt, nt=acdet, ot=b2ct, pt=cgt, gqt=b2ct, rt=gt, st=b2ct, t2=b2, bu=bcg, c2u=u, d3u=ab2cg, eu=ab2g, fu=abcg, d2gu=aces, d2hu=ab2c, iu=ab2g, ju=b2g, ku=b3, mu=b2c, d2nu=ab2cg, dgnu=aces, lnu=agnu, ou=cdnu, pu=b2, qu=b2, ru=b2c, su=b2g, tu=cgt, u2=b2, bv=abt, c2v=v, d3v=ad2v, e2v=acev, fv=bt, gv=agt, hv=gt, iv=ev, jv=aev, kv=abcgt, lv=gt, mv=agt, nv=acdev, ov=ab2ct, pv=acgt, qv=acgt, rv=agt, sv=ab2ct, tv=ab2, uv=acgt, v2=b2, bw=ab2t, c2w=w, d2w=abt, e3w=ace2w, fw=b2t, egw=acgw, hw=agw, iw=ace2w, jw=ce2w, kw=acgt, elw=cgw, emw=clw, nw=de2w, ow=abct, pw=cmw, qw=abcgt, rw=mw, sw=abct, tw=ab3, uw=abcgt, vw=b3, w2=b2, bx=abg, c2x=x, d3x=ad2x, e3x=ace2x, fx=bg, degx=acdegq, hx=agx, ix=ace2x, jx=ce2x, kx=abc, lx=agx, demx=cdehq, d2nx=adnx, mnx=gnx, dox=aox, gox=agp, dpx=dhq, gpx=ab2cg, qx=ab2c, rx=cpx, sx=ab2cg, tx=agt, ux=ab2c, vx=gt, wx=bgt, x2=b2, by=abcg, c2y=y, dy=d2u, ey=b2g, fy=bcg, hy=dhu, iy=b2g, jy=ab2g, ky=ab3, ly=dlu, my=ab2c, ny=dnu, oy=ab2g, py=ab2, qy=ab2, ry=ab2c, sy=ab2g, ty=acgt, uy=ab2, vy=cgt, wy=bcgt, xy=b2c, y2=b2, bz=ab2ct, c2z=z, d2z=abct, ez=bt, fz=b2ct, dhz=abcgt, iz=bt, jz=abt, kz=agt, dlz=abcgt, mz=abcgt, dnz=abct, gnz=dgz, lnz=adgz, oz=abt, pz=abgt, qz=abgt, rz=abcgt, sz=abt, tz=abc, uz=abgt, vz=bc, wz=b2c, xz=bcgt, yz=bgt, z2=b2, bA=ab2ct, c2A=A, d3A=ad2A, deA=abt, e2A=aceA, fA=b2ct, gA=abcgt, hA=bcgt, iA=eA, jA=aeA, kA=agt, lA=bcgt, mA=abcgt, d2nA=adnA, oA=cdnA, pA=abgt, qA=abgt, rA=abcgt, sA=abt, tA=abc, uA=abgt, vA=bc, wA=b2c, xA=bcgt, yA=bgt, zA=b2, A2=b2>

P = {a, b2, c2, acd, d2, ad3, cde, e2, ade2, ace3, cde3, e4, ade4, af, ach, ci, ej, aek, dek, al, cn, acdn, cd2n, acp, cdp, acd2p, cq, acdq, cd2q, egq, achq, cdhq, adehq, aclq, cdlq, cmq, acdmq, cr, acdr, cd2r, acs, cqt, aeqt, deqt, agu, dgu, hu, aclu, cdlu, gnu, cv, acdv, cd2v, aev, dev, dgw, cgx, acdgx, cd2gx, amx, dmx, ad2mx, acgnx, cdgnx, acpx, acgz, cdgz, chz, aA, ad2A, ceA, adnA}

Phi = 1 1 a bc abc b ab c d e abc bc f g h i j k ab3 abc l m n o bcg b3 bc ab3 b2g p agp bcg abcg ab3 b3 b2g q gp bg bcg b3 ab3 r s ces ab2t bcg ab3 t u ab2c v bcg ab3 abg w x bc y bcg b3 ab2t bt z ab2c b2cg gt ab3 abcg abcgt bct b2cg A ab2ct b3 bcg abt b2c ab2cg

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *32640
c244
ad3412
e4436