Details Page for 0.2644

Complete Solution is Known:

Period:  
Preperiod:  
Quotient Size:   1190
P-Portion Size:   75
Tame?   No

MSV File: q-0.2644.msv

Growth Pattern:

Heap   Q-Size   P-Size
221
362
5102
8184
9224
12285
13365
14406
15487
16649
178011
208212
229014
239414
2910215
3630635
4231838
4332639
4534239
4838242
4945850
5147855
5552656
5663465
5864265
6367068
7269472
7969872
8973072
9974275
26380675
67493475
1748119075

(Click on a heap to see details)

Details for Q99(0.2644):

Q = <a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D | a2=1, b4=b2, b3c=bc, bc2=b3, c3=c, bd=ab3, c2d=d, d4=ad3, be=abc, c2e=e, d2e=ab2c, e5=ace4, b2f=ab3, cf=abc, df=b3, ef=bc, f2=b2, b3g=bg, c2g=g, e2g=aceg, fg=abg, g2=b2, bh=abg, c2h=h, d3h=ad2h, e2h=ceg, fh=bg, gh=ab2, h2=b2, bi=abc, c2i=i, d2i=ab2c, dei=acde3, e2i=ace4, fi=bc, gi=eg, hi=aeg, i2=e4, bj=bc, c2j=j, d2j=b2c, de2j=cde4, e3j=ae4, fj=abc, gj=aeg, hj=eg, ij=ace2j, j2=e4, bk=b2cg, c2k=k, d2k=bcg, e2k=cdek, fk=ab2cg, gk=bc, hk=abc, ik=adek, jk=bg, k2=b2, bl=abg, d2l=d2h, e2l=aceh, fl=bg, gl=ab2, hl=b2, il=eh, jl=eg, kl=abc, l2=b2, bm=bg, c2m=m, d3m=ad2m, e2m=cel, fm=abg, gm=b2, hm=ab2, im=ael, jm=eh, km=bc, lm=ab2, m2=b2, bn=ab3, c2n=n, d3n=ad2n, en=de3, fn=b3, hn=agn, in=acde4, jn=cde4, kn=abcg, dln=adgn, dmn=ad2gn, n2=b2, bo=bc, c2o=o, d2o=ado, eo=ab2, fo=abc, ho=ago, io=ab2, jo=b2, ko=bg, lo=ago, mo=adgo, no=ab2c, o2=b2, bp=bcg, c2p=p, d3p=ad2p, ep=cem, fp=abcg, dgp=agp, hp=agp, ip=acel, jp=ceh, kp=b3, lp=agp, mp=b2c, np=del, op=b2g, p2=b2, bq=bcg, c2q=q, d3q=ad2q, fq=abcg, d2gq=gp, d2hq=ab2c, iq=ace2q, jq=ae3q, kq=b3, elq=achq, d2mq=b2c, emq=clq, nq=de2q, oq=b2g, pq=cmq, q2=b2, br=bg, c2r=r, d3r=ad2r, er=em, fr=abg, gr=b2, hr=ab2, ir=ael, jr=eh, kr=bc, lr=ab2, mr=b2, nr=cdel, or=b2cg, pr=b2c, qr=mq, r2=b2, bs=bc, c2s=s, ds=agp, e2s=b2c, fs=abc, gs=b2cg, hs=ab2cg, is=ab2, js=b2, ks=bg, ls=ab2cg, ms=b2cg, ns=ab2c, os=b2, ps=b2g, qs=b2g, rs=b2cg, s2=b2, b3t=bt, c2t=t, d2t=b2t, de2t=acdet, e3t=ace2t, ft=abt, b2gt=gt, dgt=agt, egt=acgt, ht=agt, it=ace2t, jt=ce2t, kt=bcgt, lt=agt, mt=gt, nt=acdet, ot=b2ct, pt=cgt, gqt=b2ct, rt=gt, st=b2ct, t2=b2, bu=bcg, c2u=u, d3u=ab2cg, eu=ab2g, fu=abcg, d2gu=aces, d2hu=ab2c, iu=ab2g, ju=b2g, ku=b3, mu=b2c, d2nu=ab2cg, dgnu=aces, lnu=agnu, ou=cdnu, pu=b2, qu=b2, ru=b2c, su=b2g, tu=cgt, u2=b2, bv=abt, c2v=v, d3v=ad2v, e2v=acev, fv=bt, gv=agt, hv=gt, iv=ev, jv=aev, kv=abcgt, lv=gt, mv=agt, nv=acdev, ov=ab2ct, pv=acgt, qv=acgt, rv=agt, sv=ab2ct, tv=ab2, uv=acgt, v2=b2, bw=ab2t, c2w=w, d2w=abt, e3w=ace2w, fw=b2t, egw=acgw, hw=agw, iw=ace2w, jw=ce2w, kw=acgt, elw=cgw, emw=clw, nw=de2w, ow=abct, pw=cmw, qw=abcgt, rw=mw, sw=abct, tw=ab3, uw=abcgt, vw=b3, w2=b2, bx=abg, c2x=x, d3x=ad2x, e3x=ace2x, fx=bg, degx=acdegq, hx=agx, ix=ace2x, jx=ce2x, kx=abc, lx=agx, demx=cdehq, d2nx=adnx, mnx=gnx, dox=aox, gox=agp, dpx=dhq, gpx=ab2cg, qx=ab2c, rx=cpx, sx=ab2cg, tx=agt, ux=ab2c, vx=gt, wx=bgt, x2=b2, by=abcg, c2y=y, dy=d2u, ey=b2g, fy=bcg, hy=dhu, iy=b2g, jy=ab2g, ky=ab3, ly=dlu, my=ab2c, ny=dnu, oy=ab2g, py=ab2, qy=ab2, ry=ab2c, sy=ab2g, ty=acgt, uy=ab2, vy=cgt, wy=bcgt, xy=b2c, y2=b2, bz=ab2ct, c2z=z, d2z=abct, ez=bt, fz=b2ct, dhz=abcgt, iz=bt, jz=abt, kz=agt, dlz=abcgt, mz=abcgt, dnz=abct, gnz=dgz, lnz=adgz, oz=abt, pz=abgt, qz=abgt, rz=abcgt, sz=abt, tz=abc, uz=abgt, vz=bc, wz=b2c, xz=bcgt, yz=bgt, z2=b2, bA=ab2ct, c2A=A, d3A=ad2A, deA=abt, e2A=aceA, fA=b2ct, gA=abcgt, hA=bcgt, iA=eA, jA=aeA, kA=agt, lA=bcgt, mA=abcgt, d2nA=adnA, oA=cdnA, pA=abgt, qA=abgt, rA=abcgt, sA=abt, tA=abc, uA=abgt, vA=bc, wA=b2c, xA=bcgt, yA=bgt, zA=b2, A2=b2, bB=bg, c2B=B, dB=ade2x, eB=acB, fB=abg, gB=aegq, hB=egq, iB=acB, jB=cB, kB=bc, lB=egq, mB=aegq, nB=ade2x, oB=b2cg, pB=acegq, qB=b2c, rB=aegq, sB=b2cg, tB=gt, uB=b2c, vB=agt, wB=abgt, xB=ab2, yB=ab2c, zB=abcgt, AB=abcgt, B2=b2, b2C=C, c2C=C, dC=aC, eC=acC, fC=abC, hC=agC, iC=acC, jC=cC, kC=bcgC, lC=agC, mC=gC, nC=aC, oC=cC, pC=cgC, qC=cgC, rC=gC, sC=cC, uC=cgC, vC=atC, wC=abtC, xC=agC, yC=acgC, zC=abctC, AC=abctC, BC=gC, C2=b2, bD=ab3, c2D=D, dD=cdhq, e3D=ace2D, fD=b3, gD=ab2g, hD=b2g, iD=ace2D, jD=ce2D, kD=abcg, lD=b2g, mD=ab2g, nD=degq, oD=ab2c, pD=ab2cg, qD=ab2cg, rD=ab2g, sD=ab2c, tD=ab2t, uD=ab2cg, vD=b2t, wD=bt, xD=b2g, yD=b2cg, zD=bct, AD=bct, BD=ab2g, CD=aC, D2=b2>

P = {a, b2, c2, acd, d2, ad3, cde, e2, ade2, ace3, cde3, e4, ade4, af, ach, ci, ej, aek, dek, al, cn, acdn, cd2n, acp, cdp, acd2p, cq, acdq, cd2q, egq, achq, cdhq, adehq, aclq, cdlq, cmq, acdmq, cr, acdr, cd2r, acs, cqt, aeqt, deqt, agu, dgu, hu, aclu, cdlu, gnu, cv, acdv, cd2v, aev, dev, dgw, cgx, acdgx, cd2gx, amx, dmx, ad2mx, acgnx, cdgnx, acpx, acgz, cdgz, chz, aA, ad2A, ceA, adnA, aD, ceD, ae2D}

Phi = 1 1 a bc abc b ab c d e abc bc f g h i j k ab3 abc l m n o bcg b3 bc ab3 b2g p agp bcg abcg ab3 b3 b2g q gp bg bcg b3 ab3 r s ces ab2t bcg ab3 t u ab2c v bcg ab3 abg w x bc y bcg b3 ab2t bt z ab2c b2cg gt ab3 abcg abcgt bct b2cg A ab2ct b3 bcg abt b2c ab2cg B b3 ab3 abcg cdegq ab2c b2cg b2g ab3 abcg C bcg cdegq ab2 b2g ab2t abc abt bcg b2c D ab2g b2t bc agt bcg ab2c ab2 b2c ab2t abc bcg bct bcgt b2c C ab2t aC abcC abct bct ab2c ab2t b2t bc b2ct bct abt bt ab2 ab2t abc ab3 C bt ab2 ab2c bcg abcg bc bcgt ab2g abt abcC abcg bcg abc ab2g C b2g b2c bcg b2ct abcC ab3 b2g b2cg b2c bcg abcg bcC abt b2g b2cg ab2c acgt bg abcC ab3 abt bt C b2ct bcg bg abcC bt ab2cg C b2ct abcg bg bcgt bt b2g ab2cg gt aC bg bt bcgt gC b2cg acgt bg ab2t bgt abt bcC b2g ab2ct C abg abgC abgt bcC abcC b2g ab3 C b2c abt cgC actC ab3 gt abcg bcgC abcgt abct b2g bgC agt abgC C b2c bcgt ab2g atC b2t agt bcg abct b2c actC bcC ab2t aC abtC abct abt acgC ab2t b3 ab2ct abct bct ab2c agtC acgC ab3 bcgtC bgC abt bt aC tC bcg abgtC bgtC bt aC tC gt

Monoid Structure

Idempotent  |G|  |Arch|
122
b2 *64688
c244
ad3412
e4436